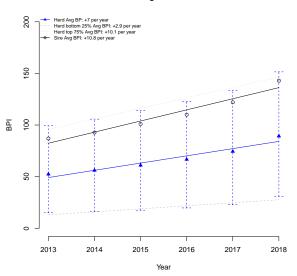
Trends in dairy herd genetic, production and reproductive performance and impact on farm profit

Richard Shephard & Bill Malcolm

13/02/2019

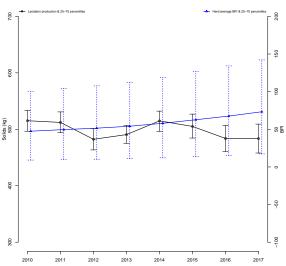
Introduction

- Industry is using multi-trait genetic indices to identify superior animals
- ► The Balanced Production Index (BPI) is developed as a profit-based index (+1 BPI unit represents +\$1)
- ▶ A wide range in BPI of 78–120 units is proposed to provide a range in annual cow contribution to profit of \$150–235 per cow between top and bottom BPI quartile cows within herds.
- Industry promotes investment in genetics based on these findings.
- Dairy farm profitability has been variable/absent in recent years suggesting these cow-level predictions of difference in profit performance do not scale up to herd-level profit responses

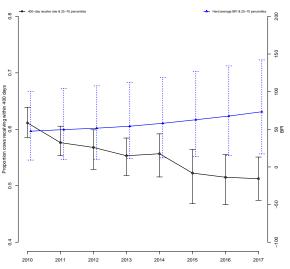

Analysis

Activities:

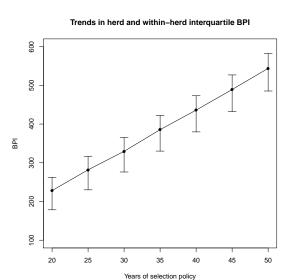
- Examined herd recording data to determine trends in cow and herd genetic merit, production and reproduction
- Modelled impact of genetic selection on herd genetic merit trends and within-herd genetic distribution
- Explored impact of genetic change on whole-farm profit using bioeconomic modelling validated against herd recording data


BPI and AI sire trends

Herd average BPI and trends


BPI and production trends

BPI and herd reproduction trends



BPI and herd physical changes

- ▶ BPI has increased by around 7 units per year
- Cow lactation production has decreased
- Cow reproductive performance (as measured by 400-day re-calving rate) has declined

for the whole herd and for top and bottom cow BPI quartiles

BPI range within herd over time

BPI trends

- ▶ There is an increasing trend of \sim 9–10 units per year. Within-herd range of cow BPI slowly increases from around 70 towards 100 over many years
- ► This implies estimated differences in cow contribution to profit between top and bottom cow BPI quartiles (as calculated using input costs and output prices) will remain consistently wide within a herd.
- This questions the value of any within-herd difference in profit as a guide to future farm profit or of how much should be invested in cow genetics next year

Bioeconomic modelling

Table 1: Whole-farm 10-year annuity of farm gross margin from modelling selection and culling strategies (herd size: 250 cows, projection: 10 years)

Calving		Net	Delta	Delta
pattern	Test scenario	dollars (\$)	dollars (\$)	(%)
Year round	No selection - Low culling	341,122	-	-
	No selection - Mod culling	341,751	629	0.2
	No selection - High culling	337,600	-3,522	-1
	selection - Low culling	343,820	2,698	0.8
	selection - Mod culling	344,394	3,272	1
	selection - High culling	340,317	-805	-0.2
Split Calve	No selection - Low culling	289,988	-	-
	No selection - Mod culling	288,519	-1,470	-0.5
	No selection - High culling	284,951	-5,037	-1.8
	selection - Low culling	$291,\!858$	1,870	0.6
	selection - Mod culling	291,212	1,224	0.4
	selection - High culling	286,964	-3,025	-1.1
Seasonal Calve	No selection - Low culling	348,461	-	-
	No selection - Mod culling	348,930	469	0.1
	No selection - High culling	348,740	279	0.1
	selection - Low culling	354,146	5,684	1.6
	selection - Mod culling	354,263	5,802	1.6
	selection - High culling	355,377	6,916	1.9

Average size of simulated herd: 250 cows

Bioeconomic modelling predicted

- Annual herd BSI response of 8 units per annum
- ► Increased lactation production of 1.7 kg solids and an increase in 400-day recalve rate of 0.5% per year
- Estimated average annual increase in farm gross margin for herds actively selecting for genetic improvement of \$2,600 for a 250-cow herd

Rates of genetic gain reflect industry data rates of change. Suggests around \$10 extra profit per cow per year for 8–10 unit increase in herd BPI per year. This represents a 0.6% increase in herd gross margin for an average annual 10-unit increase in BSI

Discussion

- Rates of herd gain in genetic merit as measured by BPI are modest
- Comparing estimates of difference in cow contribution to profit for top and bottom cow BPI quartiles does not predict future farm profitability; information is essentially inactionable
- ► Farm profit responses attributable to genetic merit change are modest
- Investment into cow genetics needs to be compared to profit responses from other farm investments.
- ► The most rational approach is to focus on improving the most limiting factor on the farm. Sometimes this can be herd genetics.

Thank-you

www.herdhealth.com.au

AARES paper and presentation available from the Downloads page